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Abstract	
	
Purpose	
In	lung	cancer	screening,	pulmonary	nodules	are	first	identified	in	low-dose	chest	CT	
images.	Costly	follow-up	procedures	could	be	avoided	if	it	were	possible	to	establish	the	
malignancy	status	of	these	nodules	from	these	initial	images.		Preliminary	computer	
methods	have	been	proposed	to	characterize	the	malignancy	status	of	pulmonary	nodules	
based	on	features	extracted	from	a	CT	image.		The	parameters	and	performance	of	such	a	
computer	system	in	a	lung	cancer	screening	context	are	addressed.		
	
Methods	
	
A	computer	system	that	incorporates	novel	3D	image	features	to	determine	the	malignancy	
status	of	pulmonary	nodules	is	evaluated	with	a	large	dataset	constructed	from	images	from	
the	NLST	and	ELCAP	lung	cancer	studies.	The	system	is	evaluated	with	different	data	
subsets	to	determine	the	impact	of	class	size	distribution	imbalance	in	datasets	and	to	
evaluate	different	training	and	testing	strategies.	
	
Results	
	
Results	show	a	modest	improvement	in	malignancy	prediction	compared	to	prediction	by	
size	alone	for	a	traditional	size-unbalanced	dataset.	Further,	the	advantage	of	size	binning	
for	classifier	design	and	the	advantages	of	a	size-balanced	dataset	for	both	training	and	
testing	are	demonstrated.	
	
Conclusion	
Nodule	classification	in	the	context	of	low-resolution	low-dose	whole-chest	CT	images	for	
the	clinically	relevant	size	range	in	the	context	of	lung	cancer	screening	is	highly	
challenging,	and	results	are	moderate	compared	to	what	has	been	reported	in	the	literature	
for	other	clinical	contexts.		Nodule	class	size	distribution	imbalance	needs	to	be	considered	
in	the	training	and	evaluation	of	computer-aided	diagnostic	systems	for	producing	patient-
relevant	outcomes.	
	
Keywords-	pulmonary	nodule	characterization;	low-dose	CT;	lung	cancer	screening;	
automated	computer	method.	
	

INTRODUCTION	
	
Compelling	clinical	studies	have	shown	a	benefit	of	lung	cancer	screening,	which	allows	for	
the	early	diagnosis	and	treatment	of	lung	cancer.	A	critical	issue	is	the	diagnosis	of	a	
pulmonary	nodule	as	benign	or	malignant.		Current	lung	cancer	screening	practice	is	to	
identify	pulmonary	nodules	on	annual	low-dose	CT	scans	and	to	apply	a	follow-up	
procedure,	such	as	another	CT	scan	or	a	fine	needle	biopsy,	to	suspicious	nodules	to	
determine	their	malignancy	status.	We	consider	here	how	that	malignancy	status	may	be	
determined	from	just	the	initial	CT	image	of	the	nodule.	
	
Pulmonary	Nodule	Size		
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It	has	been	universally	recognized	that	probability	of	malignancy	is	correlated	with	the	size	
of	pulmonary	nodules;	the	size	of	nodules	is	always	noted	in	radiological	reports	and	size	is	
used	in	radiological	staging	and	for	determining	the	follow-up	in	lung	cancer	screening.		The	
conventional	way	of	recording	size	is	to	make	a	single	or	the	average	of	two	“diameter”	
measurements	across	a	central	image	slice	through	the	nodule	and	is	expressed	in	mm.	
More	recently,	with	the	advent	of	volumetric	measurement	methods,	the	size	is	represented	
by	the	volume	of	the	nodule,	which	is	expressed	in	mm3.	While	the	former	is	more	
conventional	and	understandable	to	most	physicians,	the	latter	directly	relates	to	the	
amount	of	information	(number	of	pixels)	available	in	the	CT	image.	In	this	paper,	we	will	
use	both	measures;	in	discussions,	we	will	relate	the	equivalent	diameter	D	of	a	nodule	
given	a	volume	V	by:	

𝐷 =
6
𝜋

 𝑉
!
!

 
	

Therefore,	in	the	context	of	this	paper,	diameter	refers	to	a	surrogate	for	the	measured	
volume	of	the	nodule	and	it	does	not	correspond	to	any	actual	single-dimensional	
measurement	made	on	the	nodule	image.		
	
Further,	the	size	range	of	nodules	under	consideration	for	a	classifier	is	important	for	
nodule	classification.	We	specify	the	size	range	R	as	the	ratio	of	the	largest	to	smallest	
volume	of	nodules	in	a	dataset.	

𝑅 =  
𝑉!"#$%&'
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Nodule	Size	in	Lung	Cancer	Screening	
	
In	lung	cancer	screening,	the	objective	is	to	identify	cancers	at	the	earliest	stage;	that	is,	
when	they	are	the	smallest	in	size,	they	are	the	most	curable	and	simpler	treatment	options	
may	be	available.	Small-size	nodules	have	less	image	information	in	CT	images	than	large	
nodules	due	to	the	number	of	fixed-size	image	pixel	elements	(pixels)	that	they	span.		
Further,	in	screening,	CT	scans	are	set	at	a	low-dose	as	the	primary	task	is	detection;	
therefore,	the	image	noise	is	much	higher	than	for	regular	CT	scans.		For	a	1-mm	thick	slice	
whole-chest	CT	scan	using	the	conventional	512	x	512	image	size,	the	volume	of	each	pixel	
is	on	the	order	of	0.5	mm3;	therefore,	a	very	rough	estimate	of	the	number	of	pixels	in	a	
nodule	image	is	to	double	the	volume.		While	nodules	may	be	visible	to	a	physician	in	an	
apparent	1-2	mm	size	range,	the	image	information	is	limited.	For	example,	a	2mm	nodule	
spans	in	the	order	of	8	pixels,	a	3mm	nodule	27	pixels,	a	4mm	nodule	64	pixels	and	a	5mm	
nodule	620	pixels;	further,	for	all	these	cases,	a	large	majority	of	these	pixels	are	partial	
pixels;	that	is,	they	consist	of	a	mixture	of	the	nodule	tissue	and	the	surrounding	lung	tissue.	
	
The	larger	size	limit	of	interest	is	15-20mm.	Nodules	larger	than	this	generally	have	a	high	
probability	of	malignancy	and	very	infrequently	occur	in	the	main	repeat	rounds	of	
screening.	Such	nodules	may	be	detected	in	the	first	baseline	screening	but	should	not	occur	
in	repeat	rounds	if	appropriate	small-nodule	follow-up	procedures	are	correctly	followed.	
At	the	large	end	of	the	range	scale,	we	have	the	most	image	information	–	a	15–20mm	
nodule	image	has	on	the	order	of	106	–	107	pixels.	However,	this	upper	end	of	the	size	range	
is	much	less	clinically	interesting	since	we	aspire	to	identify	cancers	at	an	earlier	stage	and	
time	when	they	are	much	smaller	in	size.	
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An	alternative	to	characterizing	a	single	CT	image	is	to	measure	the	nodule	growth	rate	
from	two	or	more	images	[25].	However,	this	approach	is	not	currently	supported	by	
volumetrically	calibrated	CT	scanners	and	also	requires	a	delay	in	the	diagnosis	required	
for	a	measurable	change	to	occur	in	the	nodule	between	scans.	
	
Size	Bias	in	Feature	Evaluation	
	
Obviously,	size	is	a	very	important	image	characteristic	for	determining	the	probability	of	
malignancy.	In	this	paper,	we	explore	image	features	other	than	size	in	order	to	provide	an	
improved	probability	estimate.	Since	size	is	easily	determined,	the	main	question	of	interest	
is	what	is	the	probability	of	cancer	at	a	given	size	rather	than	what	is	the	probability	of	
cancer	with	respect	to	distribution	of	sizes.	
	
A	major	issue	in	exploring	pulmonary	nodule	characterization	is	to	acquire	a	large	enough	
sample	of	both	malignant	and	benign	pulmonary	nodule	images	with	known	outcomes.	It	is	
tempting	to	use	all	possible	data,	but	the	danger	here	is	that	the	size	distribution	for	the	
benign	nodules	may	have	a	much	smaller	mean	than	the	size	distribution	for	the	malignant	
nodules.	The	results	of	the	evaluation	then	reflect	the	natural	difference	in	size	distribution	
of	the	datasets	rather	than	other	characteristics	of	the	images.	
	
Our	hypothesis	is	that	the	size	distribution	difference	may	become	the	largest	factor	in	the	
performance	evaluation	of	datasets	with	different	distributions.	We	test	this	hypothesis	in	
two	ways.	First,	we	evaluate	a	size-based	classifier	that	uses	size	as	the	only	feature	on	
which	to	predict	malignancy,	and	second,	we	have	constructed	datasets	with	balanced	size	
distributions.	We	compare	the	results	of	the	size	classifier	and	the	balanced	datasets	to	the	
outcome	of	the	traditional	size-blind	approach	[2-3,	17-24].		We	also	consider	the	impact	of	
training	using	size	binning.	That	is,	using	a	set	of	size-specific	classifiers	instead	of	a	single	
size-independent	classifier.	
	
Image	Features	
	
The	general	approach	for	computer-aided	classification	as	applied	to	malignancy	diagnosis	
is	to	first	establish	a	dataset	of	images	with	known	outcomes	from	both	classes.	A	large	
number	of	image	features	(often	termed	texture	measures)	are	computed	for	all	images	in	
the	dataset,	and	a	subset	of	the	features	with	the	best	diagnostic	performance	are	selected	
for	the	final	classifier.	In	traditional	computer	vision	for	conventional	video	images,	there	
are	a	number	of	“texture”	features	that	are	classically	used.	We	placed	less	importance	on	
these	features	given	the	ways	that	the	CT	data	differs	from	conventional	images;	for	
example,	(a)	the	small	number	of	pixels	in	a	nodule,	(b)	the	large	amount	of	image	noise	and	
(c)	CT	images	are	3D	and	have	calibrated	pixel	values.	We	included	nontraditional	image	
features	for	evaluation	including	3D	geometry	features,	3D	features	of	the	density	
distribution,	surface	curvature	features	and	features	of	the	nodule	margin.	
	
In	our	preliminary	studies	[1],	we	showed	that	test	set	size	distribution	imbalance	had	a	
major	impact	on	the	perceived	outcomes	of	other	studies	[2-3]	and	that	size	balancing	
diminished	the	ROC	AUC.	Related	work	[4]	showed	that	3D	image	features	based	on	all	the	
image	pixels	of	a	nodule	were	more	effective	than	2D	image	features	based	on	just	the	
central	image	slice	of	the	nodule.		
	



	 6	

In	this	paper,	the	issues	in	evaluating	nodule	characterization	by	image	features	in	the	
context	of	lung	cancer	screening	are	explored	with	a	system	that	includes	novel	3D	image	
features.	Balanced	and	unbalanced	evaluation	datasets	are	used	to	determine	the	impact	of	
size	balancing	and	size	binning.		
	

METHODS	
	
Dataset	Selection	
	
We	combined	image	data	from	the	two	largest	lung	cancer	screening	studies,	the	Early	Lung	
Cancer	Action	Program	(ELCAP)	[5]	and	the	National	Lung	Cancer	Screening	Trial	(NLST)	
[6].	Malignant	nodules	were	included	if	there	was	a	pathologically	proven	cancer	diagnosis;	
benign	nodules	were	included	if	there	was	2	years	of	no	clinical	change	or	a	benign	
pathologic	diagnosis.		
	
Pulmonary	nodules	may	be	solid,	part-solid	or	nonsolid.	Solid	nodules	are	the	most	
common	type	for	cancer	and	consist	of	a	mass	of	invasive	cells	that	typically	have	CT	image	
intensity	similar	to	that	of	soft	tissue.	Nonsolid	nodules	typically	have	abnormal	cells	
distributed	on	the	epithelial	surface	of	the	airways.	Hence,	the	associated	lung	parenchyma	
has	a	higher	CT	image	intensity	than	normal	lung	parenchyma	but	less	dense	than	soft	
tissue	or	solid	nodules.		Little	is	known	about	nonsolid	nodules	compared	to	the	more	
typical	solid	nodules.	One	lung	cancer	screening	study	reported	that	17%	of	the	cancers	
were	nonsolid	nodules	[29].	It	has	been	suggested	that	the	part-solid	nodules	that	contain	
both	solid	and	nonsolid	components	may	occur	when	the	cancer	becomes	invasive	and	a	
more	traditional	solid	nodule	is	developing.	From	an	image	analysis	viewpoint,	nonsolid	
nodules	have	a	very	different	visual	presentation	compared	to	solid	nodules	and	are	more	
challenging	for	image	segmentation.	Clinically,	nonsolid	nodules	are	considered	to	be	more	
slow	growing	than	solid	nodules	and	also	harder	to	measure;	screening	protocols	usually	
have	a	different	management	for	these	nodules.	
	
Given	the	different	visual	presentation	of	nonsolid	nodules	and	their	small	numbers	in	our	
databases,	only	solid	nodules	or	the	solid	component	of	part-solid	nodules	were	included	in	
this	study.	Nonsolid	nodules	will	be	considered	in	a	future	study	when	more	images	are	
available.		It	is	likely	that	a	separate	image	analysis	system	for	the	nonsolid	subtype	may	
produce	the	best	analysis	outcomes.	
	
In	our	study’s	two	datasets,	the	first	dataset	contained	cases	selected	from	the	Weill	Cornell	
Medical	Center	database	(which	is	part	of	the	ELCAP	study)	that	had	at	least	one	solid	or	
part-solid	nodule	on	at	least	one	thin-slice	CT	scan.	Part-solid	nodules	were	only	included	if	
they	were	comprised	primarily	of	a	solid	component.	The	status	of	malignant	nodules	were	
determined	by	either	biopsy	or	resection,	while	the	status	of	benign	nodules	was	
established	through	a	negative	biopsy	result	or	by	2	years	of	no	clinical	change	by	a	board	
certified	radiologist.	All	CT	scans	had	a	slice	thickness	of	2.5mm	or	less.	Metastatic	cancer	
and	benign	calcified	nodules	were	excluded.	A	total	of	259	nodules	(167	malignant	and	92	
benign)	with	CT	scans	of	1.0,	1.25,	or	2.5mm	slice	were	included.	Approximately	13.9%	
(36/259)	of	the	nodules	were	on	1.0mm	scans,	73.8%	(191/259)	on	1.25mm	scans	and	
12.4%	(32/259)	on	2.5mm	scans.	Scans	were	obtained	using	GE	Medical	Systems	scanners.	
The	Weill	Cornell	image	acquisition	time	period	was	1994-2007,	and	the	majority	of	the	
Weill	Cornell	instances	were	reconstructed	using	the	BONE	kernel.	
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The	second	dataset	contained	cases	selected	from	NLST.	Participants	underwent	three	
rounds	of	screening	at	1-year	intervals.	Cancers	were	identified	through	the	NLST	protocol.	
After	three	rounds,	abnormalities	suspicious	for	lung	cancer	that	were	stable	across	the	
three	rounds	were	classified	as	minor	abnormalities	(i.e.,	benign).	We	selected	NLST	CT	
scans	with	a	slice	thickness	less	than	or	equal	to	3.2mm.	A	total	of	477	nodules	(245	
malignant	and	232	benign)	with	CT	scans	of	1.0,	1.25,	1.3,	2.0,	2.5,	3.0	and	3.2mm	slice	
thickness	were	chosen.	Approximately	2.94%	(14/477)	of	the	nodules	were	on	1.0mm	
scans,	2.73%	(13/477)	on	1.25mm	scans,	0.63%	(3/477)	on	1.3mm	scans,	37.74%	
(180/477)	on	2.0mm	scans,	48.01%	(229/477)	on	2.5mm	scans,	0.21%	(1/477)	on	3.0mm	
scans	and	7.76%	(37/477)	on	3.2mm	scans.	Scans	were	obtained	using	a	wide	range	of	
scanners	including	Siemens,	GE	Medical	Systems,	Philips	and	Toshiba	scanners.	For	NLST,	
the	screening	time	period	was	2002-2007;	NLST	images	were	reconstructed	with	a	variety	
of	reconstruction	kernels	including	STANDARD	and	BONE	(for	GE	scanners)	and	B30f	and	
B50f	(for	SIEMENS	scanners).	
	
Nodules	were	selected	to	meet	the	3D	feature	image	quality	criterion;	that	is	that	they	
spanned	at	least	three	image	slices	and	preferably	four	or	more.	Further,	all	nodules	had	a	
diameter	between	3	and	30mm.	The	volume	of	each	nodule	was	computed	from	automated	
segmentation	[7]	and	the	nodule	size	was	represented	as	the	equivalent	diameter	of	a	
sphere	with	the	equivalent	volume	as	the	nodule.	Only	one	instance	of	a	nodule	was	used	
per	case.	
	
For	both	datasets	we	used	methods	to	minimize	the	size	distribution	differences	between	
malignant	and	benign.	For	the	ELCAP	dataset,	we	selected	all	the	large	benign	nodules	that	
were	available	to	match	the	sizes	of	the	cancers.	For	the	NLST,	we	sought	to	minimize	the	
size	of	the	cancers	by	selecting	the	first	CT	image	in	a	longitudinal	sequence	where	possible.		
	
Figures	1	and	2	show	the	nodule	size	distribution	for	the	Weill	Cornell	and	NLST	dataset.	By	
combining	these	two	datasets,	we	created	a	database	with	736	nodules	(412	malignant	and	
324	benign).	Figure	3	shows	the	size	distribution	for	the	entire	database,	and	Table	1	gives	
the	statistics	for	size	distribution	for	malignant	and	benign	nodules.	

	
Fig.	1	Weill	Cornell	nodule	subset	size	distribution	
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Fig.	2	NLST	nodule	subset	size	distribution	
	
	

	
Fig.	3	Full	dataset	size	distribution	
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Table	1	Size	statistics	for	the	main	datasets	
	
Source	 Type	 Number	 Size	Min		

(mm)	
Size	Max	
(mm)	

Size	Mean	
(mm)	

Size	Median	
(mm)	

Weill	Cornell	 Malignant	 167	 3.72	 29.14	 12.80	 12.17	
Benign	 92	 3.25	 27.11	 10.21	 9.47	
All	 259	 3.25	 29.14	 11.88	 11.28	

NLST	 Malignant	 245	 3.00	 27.60	 8.93	 7.60	
Benign	 232	 3.11	 21.43	 5.76	 5.15	
All	 477	 3.00	 27.60	 7.39	 6.15	

Combined	 Malignant	 412	 3.00	 29.14	 10.50	 9.21	
Benign	 324	 3.11	 27.11	 7.02	 5.84	
All	 736	 3.00	 29.14	 8.97	 7.33	

	
Size-Balanced	Nodule	Dataset	
	
A	size-balanced	subset	of	nodules	(GA)	was	created	from	the	full	database	to	assess	the	
impact	of	size	on	the	classification	result	(see	Table	2).	First,	all	malignant	and	benign	
nodules	were	divided	into	bins	based	on	their	volumetric	derived	diameters	(3,	4,	5mm,	
etc).	Then,	bins	smaller	than	5mm	were	discarded	since	these	nodules	were	too	small	for	
the	shape	related	features	to	be	effective.	Bins	larger	than	14mm	were	discarded	due	to	the	
lack	of	data	(usually	less	than	three	nodules	per	bin).	For	the	remaining	bins	(5-14mm),	the	
same	number	of	malignant	and	benign	nodules	was	randomly	selected	to	maximize	the	
number	of	nodules	in	each	bin.	We	explored	two	binning	strategies:	the	first	was	to	create	
three	bins	each	with	a	similar	size	range	and	the	second	was	to	partition	into	just	two	bins	
(by	combining	the	two	largest	size	bins)	so	that	each	bin	would	have	a	similar	number	of	
nodules	(see	Table	3).	For	the	first	binning	strategy,	the	first	bin	(G6)	only	includes	nodules	
with	a	size	from	5.0	to	7.0mm;	the	second	bin	(G8)	includes	nodules	with	a	size	from	7.0	to	
9.0mm;	the	third	bin	(G12)	includes	nodules	with	a	size	greater	than	9.0mm.	The	three	bins	
were	designed	so	that	each	bin	would	have	a	sufficiently	large	number	of	nodules	and	the	
volume	range	within	each	bin	would	be	similar	(see	Table	3	volume	range).	For	the	second	
binning	strategy,	the	first	bin	contains	G6	nodules	and	the	second	bin	combines	both	G8	and	
G12	nodules.	
	
In	total,	163	malignant	and	163	benign	nodules	were	selected	to	have	as	similar	size	
distribution	as	possible.	In	the	size-balanced	dataset,	44.79%	(146/326)	nodules	had	a	size	
between	5.0	and	7.0mm,	28.22%	(92/326)	nodules	had	a	size	between	7.0	and	9.0mm	and	
26.99%	(88/326)	nodules	had	a	size	between	9.0	and	14.0mm.	
	
Table	2	Size	balanced	nodule	size	distributions	
Group	GA	 Number	 Size	Min		

(mm)	
Size	Max	
(mm)	

Size	Mean	
(mm)	

Size	Median	
(mm)	

Volume	Range	

Malignant	 163	 5.01	 14.00	 8.05	 7.21	 21.82	
Benign	 163	 5.02	 13.91	 8.01	 7.27	 21.28	
All	 326	 5.01	 14.00	 8.03	 7.22	 21.82	
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Fig.	4	Size	balanced	subset	nodule	size	distribution	
	
Table	3	Size-balanced	nodule	size	distributions	with	binning	
Group	 Type	 Number	 Size	

Min		
(mm)	

Size	
Max	
(mm)	

Size	
Mean	
(mm)	

Size	
Median	
(mm)	

Volume	
Median	
(mm3)	

Volume	
Range		

G6	 Malignant	 73	 5.01	 6.98	 6.04	 6.04	 115	 2.70	

Benign	 73	 5.02	 6.97	 5.96	 6.06	 116	 2.66	
G8	 Malignant	 46	 7.04	 8.96	 7.82	 7.65	 234	 2.07	

Benign	 46	 7.03	 8.84	 7.83	 7.71	 239	 1.99	
G12	 Malignant	 44	 9.05	 14.00	 11.64	 11.72	 842	 3.70	

Benign	 44	 9.02	 13.91	 11.61	 11.41	 777	 3.66	
GA	 All	 326	 5.01	 14.00	 8.03	 7.22	 197	 21.79	

	
	
Image	features	
	
In	this	work,	46	3D	features	[8]	were	computed	from	the	segmented	nodule	images.	These	
features	are	grouped	into	four	categories:	morphological,	density,	surface	curvature	and	
margin	gradient	(see	Table	1	in	“Appendix”).		Images	were	resampled	to	0.25mm3	isotropic	
resolution	for	feature	evaluation	[8].	
	
Morphological	features	describe	the	shape	characteristics	of	the	nodule	and	are	derived	
from	standard	image	moments	[9].	Radiologists	use	the	nodule	shape	as	an	indicator	of	
malignancy;	for	example,	Takashima	et	al	identified	a	greater	prevalence	of	polygonal	shape	
and	3D	ratios	in	benign	nodules	compared	to	malignancies	[10].	The	morphological	features	
are:	volume,	surface	area,	volume-to-surface	area	ratio,	compactness,	sphericity,	attachment	
ratio,	length/width/height	of	the	ellipsoid	of	inertia,	ratios	of	the	length/width/height,	the	
roll/pitch/yaw	of	the	ellipsoid	of	inertia,	and	the	scale-normalized	second-order	
morphological	moment.	
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Since	the	gray	levels	of	a	CT	scan	are	representative	of	the	density	of	the	tissue,	density	
features	can	be	derived	from	the	gray-level	voxel	values	of	the	image.	One	of	the	density	
characteristics	often	used	by	radiologists	is	the	average	density	of	the	nodule	–	whether	the	
nodule	is	solid,	part-solid,	or	nonsolid	has	a	significant	effect	on	the	interpretation	of	the	
nodule.	The	density	features	analyzed	in	this	work	are:	density	mass,	mean	density,	the	
standard	deviation,	skewness	and	kurtosis	of	the	density	histogram,	the	
length/width/height	of	the	density-based	ellipsoid	of	inertia,	the	ratios	of	
length/width/height,	and	the	scale-normalized	second-order	densitometric	moment.	
	
The	surface	features	of	a	nodule	are	often	considered	by	radiologists	in	determining	nodule	
malignancy	status.	These	features	are	represented	by	the	surface	curvature	features,	which	
measure	the	rate	of	change	of	the	surface	normal	to	the	length	of	the	surface.	Although	the	
surface	curvature	can	be	computed	directly	from	the	gray-level	voxels	[11],	errors	are	
introduced	from	the	fact	that	the	voxels	are	rectangular	approximations	of	the	nodule	
surface.	To	address	this	problem,	the	surface	curvature	is	estimated	from	a	smoothed	
polygonal	tessellation	of	the	segmented	binary	nodule	image	as	described	by	Jirapatnakul	
[30].	To	generate	the	tessellation,	the	marching	cubes	algorithm	developed	by	Lorensen	and	
Cline	[12]	was	used.	This	algorithm	results	in	triangles	located	at	angles	that	are	multiples	
of	45	degrees;	to	improve	the	surface	representation,	the	polygonal	tessellation	was	
smoothed	by	modifying	the	position	of	each	vertex	as	a	weighted	sum	of	the	neighboring	
vertices	and	itself.	Once	the	smoothed	polygonal	representation	is	obtained,	the	surface	
normal	of	each	triangle	can	be	computed.	From	the	surface	normal	of	each	triangle,	the	
surface	normal	of	each	vertex	can	be	computed	as	the	average	of	the	surface	normals	from	
each	triangle	of	which	it	is	a	member.	Finally,	the	curvature	for	a	triangle	is	computed	as	the	
average	difference	between	the	surface	normals	at	each	vertex.	The	mean,	minimum,	
maximum,	range,	standard	deviation,	skewness	and	kurtosis	of	the	curvature	distribution	
were	included	as	features.	
	
The	final	category	of	features	is	the	nodule	margin.	The	nodule	margin	refers	to	the	
boundary	of	the	nodule	and	the	surrounding	lung	parenchyma.	While	the	surface	curvature	
features	capture	the	shape	of	the	nodule	at	the	margin,	the	margin	gradient	features	
measure	the	density	changes	that	occur	at	the	margin.	To	compute	the	margin	gradient,	the	
surface	normals	for	each	triangle	in	the	nodule	surface	representation	are	used.	These	
normals	are	computed	in	the	process	of	computing	the	surface	curvature,	as	described	in	
the	previous	paragraph.	In	addition	to	the	surface	normals,	gradient	images	in	each	
direction	(x,	y,	and	z)	are	created	from	the	resampled	isotropic	grayscale	images	using	a	3D	
operator	proposed	by	Monga	et	al.	[13,	31].		At	each	triangle,	ten	gradient	samples	are	taken	
along	the	surface	normal	vector	through	the	center	of	the	triangle.	The	highest	gradient	
value	is	recorded	for	the	triangle.	The	mean,	minimum,	maximum,	range,	standard	
deviation,	skewness	and	kurtosis	of	the	distribution	of	gradients	were	included	as	features.	
	
Feature	classification	
	
Five	different	classifiers	were	evaluated:	the	distance	weighted	k-nearest-neighbors	
classifier	(dwNN)	[14],	the	Support	Vector	Machine	(SVM)	classifier	[15]	with	a	polynomial	
kernel	(SVM-P),	SVM	with	a	Radial	Basis	Function	kernel	(SVM-R),	the	logistic	regression	
classifier	(LOG)	and	the	size	threshold	classifier	(Size-C).	For	dwNN,	SVM	(polynomial	and	
RBF)	and	LOG	classifiers,	fivefold	cross-validation	approach	was	used	for	training	and	
testing.	In	the	training	stage,	training	set	was	further	divided	into	train	and	validation	for	
parameter	optimization	using	fivefold	cross-validation.	The	final	classification	outcome	was	
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represented	by	the	average	ROC	curve	and	the	area	under	the	ROC	curve	(AUC)	obtained	
using	the	five	ROC	curves	from	fivefold	cross-validation.	The	threshold	averaging	method	
was	used	for	ROC	averaging	(Fawcett	et	al.	[26]).	
	

Compared	to	the	conventional	K-Nearest	Neighbors	classifier,	the	dwNN	classifier	weights	
each	neighbor	n	of	a	feature	vector	based	on	their	distance	dn.	The	weight	wn	is	computed	as	
follows	where	σ	is	a	constant	that	controls	the	impact	of	each	neighbor	on	the	classification	
outcome.	In	the	training	stage,	a	grid	search	was	performed	to	find	the	optimal	σ	(see	
Table2	in	“Appendix”).	

𝑤! =
1

𝑒𝑥𝑝 𝜎 ∗ 𝑑!
	

	
The	SVM	classifier	was	implemented	using	the	SVMlight	library	[28].	For	the	SVM	with	
polynomial	kernel	(SVM-P),	the	two	parameters	obtained	from	training	were	the	order	of	
polynomial	kernel	d	and	the	trade-off	between	training	error	and	margin	c.	The	search	
space	for	d	and	c	is	shown	in	Table	2	in	“Appendix”.	Joachims	[28]	stated	that	c=0.001	is	
acceptable	for	most	tasks	and	a	larger	c	leads	to	considerably	longer	training	time.	For	SVM	
with	RBF	kernel	(SVM-R),	the	two	parameters	obtained	from	training	were	the	weighting	
factor	in	the	polynomial	kernel	g	and	the	trade-off	between	training	error	and	margin	c.	The	
search	space	for	g	and	c	is	also	shown	in	Table	2	in	“Appendix”.	
	
For	the	LOG	classifier,	Peduzzi	et	al.	[16]	have	shown	in	a	simulation	study	that	for	each	
feature,	LOG	would	require	at	least	10	positive	and	10	negative	samples	to	avoid	bias.	In	the	
training	stage,	each	feature	was	ranked	based	on	its	individual	AUC	and	the	top	n	features	
were	selected.	The	search	space	for	n	is	shown	in	Appendix	Table	2.	
	
In	addition,	results	for	the	size-only	classification	scheme	were	computed.	For	a	given	size	
threshold	T,	the	size	classifier	indicates	that	all	nodules	with	a	size	greater	than	T	are	
malignant	and	all	nodules	with	a	size	less	than	T	are	benign.	The	evaluation	metric	was	the	
AUC,	which	was	achieved	by	varying	the	size	threshold	T	through	the	size	range	of	the	
nodules	in	the	dataset;	therefore,	no	training	was	required	for	this	classification	method.	
The	size	classifier	provides	information	on	the	size	imbalance	within	the	malignant	and	
benign	size	distribution	of	the	test	dataset	–	the	greater	the	size	imbalance,	the	higher	the	
AUC.	
	
Experiments	
	
Two	main	experiments	were	performed:	the	first	to	evaluate	the	impact	of	class	size	
distribution	imbalance	by	comparing	the	size-only	classifier	to	methods	using	additional	
image	features,	and	the	second	to	evaluate	the	impact	of	using	size-balanced	datasets.	In	all	
experiments,	the	full	set	of	image	features	and	all	five	classifier	types	were	considered.	The	
organization	of	the	experiments	is	illustrated	in	Fig.	5.	The	main	dataset	All	Data	consists	of	
the	two	trial	cohorts.	A	size	distribution-balanced	dataset	is	selected	from	All	Data	for	the	
second	experiment,	and	it	is	further	partitioned	into	size	bins	for	the	binning	classifiers.	
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Fig.	5	Overview	of	the	experiment	organization.	
	
In	the	first	experiment,	the	traditional	method	for	training	and	testing	using	cross-
validation	on	All	Data	was	evaluated.		In	addition,	to	illustrate	the	impact	of	the	size	
imbalance,	the	classifiers	trained	on	just	one	of	the	two	data	cohorts	are	also	evaluated	with	
All	Data.	
	
In	the	second	experiment,	the	performance	of	three	different	classifiers	trained	on	only	the	
Balanced	Data	subset	is	compared	to	the	traditional	classifier	trained	in	All	Data	using	three	
different	training	strategies	with	the	data	subsets	shown	in	Table	3.		First,	the	performance	
of	this	dataset		(GA)	using	the	unbalanced	full-data-trained	classifier	from	the	first	
experiment	was	measured.	Second,	the	performance	of	the	balanced	data	(GA)	trained	
(through	cross-validation)	with	itself	was	evaluated.	Third,	a	binned	training	strategy	was	
evaluated	where	the	balanced	dataset	was	partitioned	into	different	sized	groups	and	each	
classifier	was	trained	for	each	group	using	only	nodules	in	the	same	size	group.		A	two	bin	
grouping	using	bins	G6	and	G8+G12	and	a	three	bin	strategy	using	bins	G6,	G8	and	G12	
were	evaluated.		
	
The	usual	metric	for	classifier	performance	is	the	area	under	the	curve	(AUC).	Since	in	this	
context	much	of	this	performance	is	attributed	to	difference	in	the	test	set	size	distribution,	
an	additional	metric,	the	incremental	increase	in	AUC	compared	to	a	size	classifier	(IAUC),	
was	considered	to	be	more	relevant.	The	DeLong	test	[27]	was	used	to	assess	pairs	of	ROCs.	
It	estimates	a	covariance	matrix	from	two	ROC	curves,	which	may	also	be	used	to	construct	
confidence	regions	and	compute	the	statistical	significance	of	the	difference	between	the	
two	AUCs.	
	

RESULTS	
	

In	the	following	tables	of	AUC	results,	the	mean	AUC	value	for	the	fivefold	cross-validation	is	
reported,	together	with	the	standard	deviation	in	parenthesis.		Also	the	p-value	of	the	
Delong	test	with	respect	to	the	size	classifier	is	given.		
	
Results	for	the	size-unbalanced	dataset	
	
The	result	for	the	full	unbalanced	dataset	is	shown	in	Table	4.	A	comparison	of	the	different	
training	datasets	using	an	SVM-P	classifier	is	shown	in	Fig.	6.	A	comparison	of	the	different	
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classifiers	for	the	full	unbalanced	dataset	is	given	in	Fig.	7.	For	LOG	on	the	full	unbalanced	
data	(Table	4	all	row),	the	optimal	set	of	features	is	listed	in	Table	3	in	“Appendix”.	For	the	
full	unbalanced	data,	each	classifier’s	ROC	was	compared	to	size	classifier’s	ROC	and	their	p-
values	are	listed	in	Table	4.	Values	listed	in	bold	in	Table	4	indicate	the	ROC	appears	in	
either	Figs.	6	or	7. 
	
Table	4	Classifier	performance	(AUC)	for	the	unbalanced	data	sets.	σ	is	the	standard	
deviation.	Size-C	AUC	=	0.725. 
Training	 	 dwNN	 SVM-P	 SVM-R	 LOG	
Weill	
Cornell	

AUC	
σ	

0.737		
(0.046)	

0.731	
(0.027)	

0.731		
(0.027)	

0.716		
(0.036)	

NLST	 AUC	
σ	

0.738		
(0.032)	

0.766	
(0.039)	

0.763		
(0.036)	

0.749		
(0.047)	

All	 AUC	
σ	
IAUC	
p-value	

0.750		
(0.042)	
0.025	
(p=0.09)	

0.772	
(0.034)	
0.047	
(p<0.001)	

0.772	
(0.031)	
0.047	
(p<0.001)	

0.761	
(0.038)	
0.036	
(p=0.15)	

	

	
Fig.	6	ROC	curve	for	SVM	with	Polynomial	kernel	on	the	two	training	dataset	separately	
(red	for	Weill	Cornell	and	green	for	NLST)	and	combined	(blue).	The	size	classifiers	on	Weill	
Cornell	(black),	NLST	(brown)	and	combined	dataset	(magenta)	are	also	shown.	
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Fig.	7	ROC	curve	for	dwNN	(red),	SVM	with	Polynomial	kernel	(green),	SVM	with	RBF	
kernel	(blue),	logistic	regression	(black)	and	size	classifier	(magenta)	on	the	full	unbalanced	
dataset.	
	 	
Results	for	the	size-balanced	dataset	
The	results	for	the	balanced	dataset	with	the	unbalanced	training	and	the	balanced	training	
schemes	are	shown	in	Table	5.	Each	classifier	was	also	compared	to	the	size	classifier	and	
the	p-value	is	given.	Table	6	shows	the	results	using	different	training	conditions	for	the	
two	binning	strategies.	The	training	conditions	were:	unbalanced	binned	training	and	
balanced	binned	training.	For	each	training	condition,	only	the	result	from	the	best	classifier	
is	shown.	The	two	binning	strategies	were:	three	bins	(G6,	G8	and	G12);	two	bins	where	the	
two	larger	bins	G8	and	G12	were	combined	into	one	large	bin	and	the	same	experiments	
were	repeated	using	a	small	bin	(G6)	and	a	large	bin	(G8+G12),	each	with	a	similar	number	
of	nodules.	Table	7	shows	the	overall	performance	for	the	binned	classifiers	(three	bins	and	
two	bins)	under	different	training	conditions.	
	
Table	5	Classifier	performance	(AUC)	for	the	balanced	dataset	GA	trained	on	balanced	and	
unbalanced	data.	Standard	deviation	σ,	IAUC	and	p-value	are	also	listed.	Size-C	AUC	=	0.510.	
Training	 	 dwNN	 SVM-P	 SVM-R	 LOG	
Unbalanced	 AUC	

σ	
IAUC	
p-value	

0.584		
(0.014)	
0.074	
(p=0.14)	

0.639		
(0.050)	
0.129	
(p=0.01)	

0.642		
(0.048)	
0.132	
(p=0.009)	

0.564		
(0.035)	
0.054	
(p=0.11)	

Balanced	 AUC	
σ	
IAUC	
p-value	

0.700		
(0.051)	
0.190	
(p<0.001)	

0.708		
(0.062)	
0.198	
(p<0.001)	

0.699		
(0.056)	
0.189	
(p<0.001)	

0.624		
(0.095)	
0.115	
(p=0.003)	



	 16	

	
The	ROC	curves	for	the	full	balanced	dataset	with	each	classifier	with	balanced	training	(GA	
balanced)	are	shown	in	Fig.	8.	The	ROC	curves	for	GA	with	each	classifier	with	unbalanced	
training	(GA	unbalanced)	are	shown	in	Fig.	9.	Figure	10	shows	the	ROC	curves	for	the	best	
classifier	under	each	training	condition:	unbalanced	training,	balanced	training,	overall	
performance	using	three	bins	(G6,	G8	and	G12),	and	overall	performance	using	two	bins	
(small	and	large).	For	testing	on	GA	set	using	balanced	and	unbalanced	training,	the	optimal	
features	for	LOG	are	listed	in	Table	4	in	“Appendix”.	
	
Table	6	Best	performance	AUC	for	different	evaluation	data	sets:	G6,	G8,	G12	and	Large	
(G8+G12).	The	best	classifier	and	standard	deviation	σ	are	also	listed.	
Training	 	 G6	 G8	 G12	 Large		

(G8	+G12)	
Unbalanced	
(Binned)	

AUC	
σ	
Classifier	

0.646	
(0.050)	
(dwNN)	

0.699	
(0.130)	
(SVM-P)	

0.745		
(0.093)	
(SVM-R)	

0.740		
(0.081)	
(SVM-R)	

Balanced	
(Binned)	

AUC	
σ	
Classifier	

0.691		
(0.078)	
(LOG)	

0.759		
(0.141)	
(SVM-P)	

0.759		
(0.089)	
(SVM-P)	

0.780		
(0.079)	
(SVM-P)	

Size-C	 AUC	 0.546	 0.500	 0.507	 0.503	
	
Table	7	Best	performance	AUC	for	binned	classifiers	(3-bin	and	2-bin).	Size-C	AUC	=	0.510.	
Training	 	 3-bin	 2-bin	
Unbalanced	 AUC	

σ	
IAUC	
p-value	

0.666	
(0.036)	
0.156	
(p=0.002)	

0.684	
(0.048)	
0.174	
(p<0.001)	

Balanced	 AUC	
σ	
IAUC	
p-value	

0.726	
(0.056)	
0.216	
(p<0.001)	

0.742	
(0.057)	
0.232	
(p<0.001)	
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Fig.		8	Comparison	of	classifiers	on	the	size-balanced	dataset	GA	using	balanced	training.	
	
	
	

	
Fig.	9	Comparison	of	classifiers	on	the	size-balanced	dataset	GA	using	unbalanced	training.	



	 18	

	
	

	
Fig.	10	Comparison	of	the	best	classifier	under	different	training	conditions	when	tested	on	
the	size-balance	dataset	GA.	
	

DISCUSSION	
	
Due	to	the	data	selection	methods	for	size	balancing	and	the	image	quality	requirements	
neither	of	the	size	distributions	for	the	Weill	Cornell	nor	NLST	data	accurately	reflect	the	
size	distributions	of	the	subjects	in	lung	cancer	screening	studies;	however,	the	general	
distribution	for	the	cancers	is	representative	as	we	selected	all	usable	malignant	nodule	
images.	This	is	not	the	case	for	the	benign	nodules	since	these	were	selected	with	a	view	to	
size	balancing.	In	the	full	studies,	there	are	many	more	small	benign	nodules.	
	
Pulmonary	nodule	classification	from	screening	CT	images	acquired	for	nodule	detection	is	
a	very	challenging	task	given	the	small	size	of	the	nodules	and	the	large	amount	of	image	
noise.	From	Table	4	and	Figs.	6,	7,	we	see	that	the	size	classifier,	which	is	only	sensitive	to	
the	difference	in	the	size	distributions	for	benign	and	malignant	nodules,	provides	an	AUC	
of	0.725	for	the	combined	dataset.	This	number	would	have	been	much	higher	(and	
comparable	to	other	published	studies)	if	we	had	included	the	very	large	number	of	small	
benign	nodules	that	were	documented	in	the	full	screening	studies.		The	size	classifier	ROC	
curves	in	Fig.	6	for	the	two	individual	study	datasets	show	very	similar	properties	with	a	
slightly	larger	size	imbalance	for	the	NLST	dataset.	Note,	in	Fig.	6,	the	best	evaluation	results	
are	superior	to	but	follow	most	closely	the	size	evaluation	curve	of	the	All	Data	test	set	even	
when	the	classifier	is	trained	only	by	a	single	cohort.	
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In	Fig.	7,	we	see	a	comparison	of	the	different	classification	methods	used	for	the	combined	
full	unbalanced	dataset.	Very	little	difference	is	noted;	the	best	classifiers	(SVM-P	and	SVM-
R)	have	an	IAUC	of	only	0.047	over	the	size	classifier.	The	average	improvement	is	0.039.	
From	Table	4	we	see	that	the	IAUC	is	only	statistically	significant	for	the	two	SVM	classifiers	
(p<0.05).	
	
The	results	for	the	size	full	balanced	dataset	are	shown	in	Table	5,	6,	7	and	Figs.	8,	9,	10.	The	
size	classifier	has	an	AUC	of	0.510;	for	a	perfectly	balanced	dataset	the	value	would	be	
0.500.	For	the	balanced	data	test	set	GA,	the	unbalanced	classifier	(which	claimed	an	AUC	of	
0.772	when	evaluated	on	all	nodules)	only	achieved	an	AUC	of	0.642	(IAUC	of	0.132)	
compared	to	an	AUC	of	0.708	(IAUC	of	0.198)	using	the	balanced	classifier.	This	difference	
in	performance	was	statistically	significant	(p=0.01).	
	
In	Table	6	and	7	and	Fig.	10,	the	AUC	results	for	binning	are	shown.	While	all	AUCs	were	
statistically	significant	with	respect	to	the	size	classifier,	none	of	the	balanced	binned	
classifier	was	statistically	significantly	different	with	respect	to	the	unbalanced	binned	
classifier.	However,	the	binned	results	show	better	AUC	values	compared	to	balanced	
training	overall	0.742	(two	bins),	0.726	(three	bins)	versus	0.708	(balanced	training).	
Further,	the	small-nodule	bin	(G6)	shows	a	lower	AUC	than	the	others	under	all	training	
conditions.		For	the	binned	training,	the	IAUC	for	G6	was	0.145,	while	for	the	other	bins,	it	
was	much	higher	(G8,	0.259,	G12,	0.252;	(G8+G12)	0.277).	This	implies	the	image	features	
are	less	effective	for	these	small	nodules.	An	improvement	of	performance	of	the	2-bin	
classifier	is	noted	(0.742	vs.	0.708)	although	this	is	not	statistically	significant	p=0.35.	
	
Figures	11	through	13	provide	examples	of	some	of	the	image	issues	and	demonstrate	the	
range	of	presentations	shared	by	both	malignant	and	benign	nodules.	Figure	11	shows	the	
impact	of	the	image	reconstruction	filter	on	image	quality,	Fig.	12	shows	malignant	and	
benign	nodules	with	similar	complex	presentations	and	Fig.	13	shows	the	impact	of	
structured	image	noise.		
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											Malignant	B50f																																		Malignant	B30f	

					 	
																	Benign	B50f																																	Benign	B30f	
Fig.	11	The	effect	of	the	CT	image	reconstruction	filter	
	

					 	
																	Malignant																																											Benign	

					 	
																	Malignant																																							Benign	
Fig.	12	Examples	of	nodules	with	similar	complex	presentations	
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															Malignant																																								Benign																																														Benign	
	
Fig.	13	Examples	of	images	in	which	the	nodules	intensity	is	impacted	by	structured	
scanner	noise	
	
There	have	been	a	number	of	studies	on	characterizing	the	malignancy	status	of	pulmonary	
nodules	from	CT	images	reported	in	the	literature	[2-3,	17-24];	performances	have	been	
reported	in	terms	of	area	under	the	curve	(AUC)	for	ROC	analysis	in	the	range	of	0.79-0.92.	
Of	these	studies,	only	three	have	used	nodules	from	a	lung	cancer	screening	study	[2,	18,	
21].	These	three	studies	all	used	the	same	dataset	that	has	over	400	benign	nodules	and	less	
than	80	malignant	nodules	and	is	dominated	by	a	large	number	of	very	small	benign	
nodules	(smaller	than	any	malignant	nodule);	which	is	a	major	factor	in	determining	the	
AUC	performance	[1].		
	
Limitations	of	this	study	
	
For	this	retrospective	study,	the	data	are	on	the	order	of	10	years	old	and	does	not	reflect	
the	impact	of	recent	changes	in	CT	technology.	Many	of	the	scans	(65%)	especially	those	
from	the	NLST	(94%)	had	a	slice	thickness	greater	than	or	equal	to	2mm	which	is	half	the	
image	resolution	specified	by	current	lung	cancer	screening	guidelines.	We	did	not	consider	
nonsolid	nodules	since	these	are	a	different	phenotype	and	lack	representation	in	our	
database	in	sufficient	numbers;	these	nodules	should	be	the	subject	of	a	future	study.		
	
The	scans	for	this	study	span	a	wide	range	of	CT	models	and	parameter	settings.	No	image	
preprocessing	was	performed	to	compensate	for	different	image	scanner	parameters,	
especially	with	respect	to	image	reconstruction	filtering	and	image	noise	(see	Figs.	11,	13);	
however,	image	resampling	to	isotropic	space	was	performed	for	feature	evaluation.	
	

CONCLUSION	
	
The	task	of	nodule	classification	in	the	context	of	lung	cancer	screening	has	the	following	
distinguishing	characteristics:	(a)	low	image	resolution,	(b)	high	image	noise	(c)	
tremendous	size	range	of	nodules,	(d)	different	size	distributions	for	benign	and	malignant	
nodules	and	(e)	a	large	variation	in	CT	scanner	acquisition	parameters.	For	a	classification	
system	to	be	relevant	to	lung	cancer	screening,	all	these	issues	need	to	be	considered.	
Ignoring	size	issues	may	result	in	overly	optimistic	performance	results	that	reflect	only	the	
imbalance	in	the	test	set	size	distribution.	This	imbalance	causes	the	system	to	confound	the	
population-based	difference	in	size	distribution	with	the	patient-specific	image	features	of	
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the	nodule.	The	predictive	power	associated	with	the	nonsize-impacted	image	features	may	
be	determined	by	using	a	size-balanced	dataset.	
	
In	this	study,	we	have	explored	the	size	issues	using	a	large	size-enriched	dataset	of	736	
nodules	by	combining	images	from	the	two	largest	lung	cancer	screening	studies.	Our	
results	indicate	that	there	is	a	measurable	improvement	in	the	prediction	of	malignancy	by	
using	image	features	over	size	alone;	however,	the	main	predictor	is	size	and	this	must	be	
carefully	accounted	for	when	attributing	the	benefit	of	other	image	features.	The	
overoptimistic	performance	and	biased	learning	due	to	class	size	distribution	differences	
can	be	avoided	by	using	a	size–balanced	evaluation	dataset.	The	tremendous	size	range	of	
pulmonary	nodules	encountered	in	screening	may	be	addressed	by	binning,	that	is,	training	
a	set	of	classifiers	on	a	small	nodule	size	ranges	and	selecting	the	size-specific	classifier	for	a	
given	case.	In	any	case,	appropriate	representation	of	the	large	size	range	will	require	much	
larger	data	sets	than	the	736	cases	that	we	used	in	this	study.	
	
In	this	study,	the	incremental	improvement	of	the	AUC	over	size	was	only	0.047	for	the	full	
unbalanced	dataset.	The	balanced	data	test	set	had	a	statistically	significant	improved	
performance	(p=0.01)	with	the	IAUC	increasing	from	0.132	to	0.198	when	trained	on	the	
balanced	data,	which	was	further	increased	to	0.232	by	using	two	bins.	This	provides	a	
modest	improvement	over	size	information	alone.	
	
The	population-based	probability	of	malignancy	based	on	size	is	a	major	prediction	factor	
that	is	known	a	priori	from	the	analysis	of	cancer	screening	studies	and	practice.		The	
essential	issue	for	a	patient-based	nodule	characterization	system	is	to	determine	the	
probability	of	malignancy	conditioned	on	a	size,	rather	than	the	joint	probability	of	
malignancy	and	size.	
	
There	are	several	technical	improvements	that	may	lead	to	improved	classification	
performance	including	higher	resolution	images,	standardization	on	scanner	parameters	
and	reduction	in	image	noise.	
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APPENDIX	
	
The	appendix	includes	four	tables.	Table	1	lists	all	46	3D	image	features	used	in	the	
experiments,	their	abbreviations,	and	their	mathematical	definitions.	They	are	divided	into	
four	categories:	morphological,	density,	curvature	and	margin	gradient.	Morphological	and	
density	features	are	based	on	standard	moments	[9]	while	other	features	including	
curvature	and	gradient	features	that	involve	a	polygon	surface	representation	are	described	
in	[30].		Table	2	gives	the	parameter	search	space	in	the	training	stage	for	the	four	different	
classifiers:	dwNN,	SVM	with	polynomial	kernel	(SVM-P),	SVM	with	Radial	Basis	Function	
kernel	(SVM-R)	and	logistic	regression	(LOG).	Table	3	gives	the	optimal	features	for	LOG	
classifier	on	the	full	unbalanced	dataset	using	fivefold	cross-validation.	Table	4	gives	the	
optimal	features	for	LOG	classifier	on	the	balanced	dataset	with	balanced	training	and	
unbalanced	training	conditions.	
	
Features	
		
Table	1	Nodule	feature	description.	
Name	 Definition	 Equation	
Morphological	Features	
gvol	 volume	(mm3)	 𝑚!!! ∙ 𝑉!"#$% 	
gsa	 surface	area	(mm2)	 (𝑉!" ∙ 𝑥!"# ∙ 𝑦!"# + 𝑉!" ∙ 𝑥!"# ∙ 𝑧!"# + 𝑉!"

∙ 𝑦!"# ∙ 𝑧!"#)	
gvsr	 volume	to	surface	area	ratio	 𝑔𝑣𝑜𝑙

𝑔𝑠𝑎
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gcmp	 compactness	 4𝜋 ∙ 𝑔𝑣𝑜𝑙

𝑔𝑠𝑎
!
!

	

gdiml	 length	of	ellipsoid	of	inertia	 |𝑉!|	
gdimw	 width	of	ellipsoid	of	inertia	 |𝑉!|	
gdimh	 height	of	ellipsoid	of	inertia	 |𝑉!|	
garlh	 length	to	height	ratio	 𝑔𝑑𝑖𝑚𝑙

𝑔𝑑𝑖𝑚ℎ
	

garlw	 length	to	width	ratio	 𝑔𝑑𝑖𝑚𝑙
𝑔𝑑𝑖𝑚𝑤

	

garwh	 width	to	height	ratio	 𝑔𝑑𝑖𝑚𝑤
𝑔𝑑𝑖𝑚ℎ

	

gsph	 sphericity	 𝑔𝑐𝑚𝑝
𝑔𝑎𝑟𝑙ℎ

	

grr	 orientation	angle:	roll	(degrees)	
cos−1

(0,𝑉! 𝑦 ,𝑉! 𝑧
𝑉!

∙ sgn(𝑉! 𝑦 )	

grp	 orientation	angle:	pitch	(degrees)	
cos−1

(𝑉! 𝑥 , 0,𝑉! 𝑧 )
𝑉!

∙ sgn(𝑉! 𝑧 )	

gry	 orientation	angle:	yaw	(degrees)	
cos−1

(𝑉! 𝑥 ,𝑉! 𝑦 , 0)
𝑉!

∙ sgn(𝑉! 𝑦 )	

m200	 normalized	morphological	moment	
of	order	(2,0,0)	

𝑀!""	

m020	 normalized	morphological	moment	
of	order	(0,2,0)	

𝑀!"!	

m002	 normalized	morphological	moment	
of	order	(0,0,2)	

𝑀!!"	

attach	 attachment	ratio	 𝑉!"
𝑉!"

	

Density	Features	
dmass	 density	mass	

𝐼(𝑥, 𝑦, 𝑧)
!!!

!!!

!!!

!!!

!!!

!!!

	

dmd	 mean	density	 1
𝑁!""

𝐼(𝑥, 𝑦, 𝑧)
!!""!!

!

	

dsd	 density	histogram	standard	
deviation	 1

𝑁!""
𝐼 𝑥, 𝑦, 𝑧 − 𝜇 !

!!""!!

!

	

dskew	 density	histogram	skewness	 𝐼 𝑥, 𝑦, 𝑧 − 𝜇 !!!""!!
!

𝑑𝑠𝑑!
	

dkurt	 density	histogram	kurtosis	 𝐼 𝑥, 𝑦, 𝑧 − 𝜇 !!!""!!
!

𝑑𝑠𝑑!
− 3	

ddiml	 density	based	length	of	ellipsoid	of	
inertia	

|𝐷!|	

ddimw	 density	based	width	of	ellipsoid	of	
inertia	

|𝐷!|	
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ddimh	 density	based	height	of	ellipsoid	of	
inertia	

|𝐷!|	

darlh	 density	based	length	to	height	ratio	 |𝐷!|
|𝐷!|

	

darlw	 density	based	length	to	width	ratio	 |𝐷!|
|𝐷!|

	

darwh	 density	based	width	to	height	ratio	 |𝐷!|
|𝐷!|

	

d200	 normalized	densitiometric	moment	
of	order	(2,0,0)	

𝐷!""	

d020	 normalized	densitiometric	moment	
of	order	(0,2,0)	

𝐷!"!	

d002	 normalized	densitiometric	moment	
of	order	(0,0,2)	

𝐷!!"	

Curvature	Features	
cmin	 minimum	curvature	 min {𝐶!!}	
cmax	 maximum	curvature	 max {𝐶!!}	
cran	 range	of	curvature	 max 𝐶!! −min {𝐶!!}	
cmean	 mean	curvature	 𝑚𝑒𝑎𝑛{𝐶!!}	
csd	 standard	deviation	of	curvature	 𝑠𝑑{𝐶!!}	
cskew	 skewness	of	curvature	 𝐶!! −𝑚𝑒𝑎𝑛{𝐶!!}

!
!

𝑠𝑑 𝐶!!
! 	

ckurt	 kurtosis	of	curvature	 𝐶!! −𝑚𝑒𝑎𝑛{𝐶!!}
!

!

𝑠𝑑 𝐶!!
! − 3	

Margin	Gradient	Features	
tmin	 minimum	gradient	 min {𝐺!!}	
tmax	 maximum	gradient	 max {𝐺!!}	
tran	 range	of	gradient	 max 𝐺!! −min {𝐺!!}	
tmean	 mean	gradient	 𝑚𝑒𝑎𝑛{𝐺!!}	
tsd	 standard	deviation	of	gradient	 𝑠𝑑{𝐺!!}	
tskew	 skewness	of	gradient	 𝐺!! −𝑚𝑒𝑎𝑛{𝐺!!}

!
!

𝑠𝑑 𝐺!!
! 	

tkurt	 kurtosis	of	gradient	 𝐺!! −𝑚𝑒𝑎𝑛{𝐺!!}
!

!

𝑠𝑑 𝐺!!
! − 3	

	
All	the	features,	with	the	exception	of	the	attachment	ratio	feature,	the	curvature	and	the	
margin	features	were	derived	from	3D	image	moments	defined	in	[9].	The	3D	image	
moment	of	order	(p+q+r)	is	defined	as:	

𝑚!"# = 𝑥!𝑦!𝑧!𝑣(𝑥, 𝑦, 𝑧)
!!!

!!!

!!!

!!!

!!!

!!!

	

where	𝑣(𝑥, 𝑦, 𝑧)	is	a	discrete	function	of	size	(𝑀×𝑁×𝐿)	and	can	be	binary	or	grayscale.	All	
moment-related	features	in	this	paper	are	standard	moments,	which	are	normalized	with	
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respect	to	scale,	translation	and	rotation	[9].	When	𝑣(𝑥, 𝑦, 𝑧)	is	binary,	the	moments	are	
normalized	morphological	moments	𝑀!"# .	When	𝑣(𝑥, 𝑦, 𝑧)	is	grayscale	(voxel	intensity),	the	
moments	are	normalized	densitiometric	moments	𝐷!"# .		
	
The	voxel	size	is	defined	as:	

𝑉!"#$% = 𝑥!"# ∙ 𝑦!"# ∙ 𝑧!"#	
where	xres,	yres,	zres	are	the	x,	y,	z	image	resolutions.	The	intensity	of	𝑉!"#$% 	is	𝐼(𝑥, 𝑦, 𝑧).	
	
A	surface	voxel	can	be:	
𝑉!":	surface	voxel	in	the	surface	perpendicular	to	the	z-axis;	
𝑉!":	surface	voxel	in	the	surface	perpendicular	to	the	y-axis;	
𝑉!":	surface	voxel	in	the	surface	perpendicular	to	the	x-axis.	
	
The	orientation	is	derived	from	the	solution	of	the	eigenproblem:	𝐴𝑣 = 𝜆𝑣,	where	𝑣	is	a	
vector	and	A	is	defined	as:	

𝐴 =
𝑚!"" 𝑚!!" 𝑚!"!
𝑚!!" 𝑚!"! 𝑚!""
𝑚!"! 𝑚!"" 𝑚!!"

	

The	solution	of	this	problem,	eigenvectors	(𝑉! ,𝑉! ,𝑉!)	and	eigenvalues	𝜆! > 𝜆! > 𝜆!,	form	
the	major	principal	axis	𝑉! ,	the	intermediate	principal	axis	𝑉! ,	the	minor	principal	axis	𝑉!	[9,	
30].	When	𝑚!"# 	is	the	geometric	moment,	the	major,	intermediate	and	minor	axes	are	
geometric:	𝑉! ,𝑉! ,𝑉! .	When	𝑚!"# 	is	the	density	moment,	the	axes	are	density	based:	
𝐷! ,𝐷! ,𝐷! .	
	
The	roll,	pitch,	yaw	angles	are	defined	as	the	rotation	of	an	object	about	the	standard	x-y-z	
axes.	The	roll	angle	𝛾	is	a	rotation	of	𝛾	about	the	x-axis.	The	pitch	angle	𝛽	is	a	rotation	of	𝛽	
about	the	y-axis	after	the	first	rotation.	The	yaw	angle	𝛼	is	a	rotation	of	𝛼	about	the	z-axis	
after	the	first	two	rotations	[9].	
	
The	attachment	ratio	is	the	ratio	of	the	number	of	surface	voxels	along	the	border	of	the	
removed	vessels	and	the	nodule,	𝑉!" ,	to	the	number	of	surface	voxels	of	the	segmented	
nodule,	𝑉!" .		
	
The	density	statistics	are	computed	using	the	central	statistical	moments,	which	are	the	
summations	of	powers	of	the	voxel	density	values	(intensity)	normalized	to	the	mean	value,	
𝜇.	

𝜇! = 𝑣 𝑥, 𝑦, 𝑧 − 𝜇 !

!!""!!

!

	

where	𝑁!"" 	is	the	number	of	voxels.	
	
Surface	curvature	is	defined	as	the	rate	of	change	of	the	surface	normal	𝜙	with	respect	to	
the	surface	length.	For	3D	curvature	measurement,	a	discrete	piecewise	linear	model	for	the	
nodule	surface	is	used.	Curvature	is	estimated	on	a	smoothed	tessellated	polygonal	surface	
model	of	the	segmented	nodule,	generated	using	the	marching	cubes	algorithm.	The	
resulting	triangular	polygonal	surface	representation	is	smoothed	by	replacing	the	location	
of	a	vertex	by	a	weighted	sum	of	neighboring	vertices	and	itself.	The	nodule	surface	regions	
where	attached	structures	such	as	vessels	have	been	removed	are	deleted.	
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The	surface	curvature	is	estimated	for	each	pair	of	vertices	in	the	remaining	triangular	
mesh.	First,	the	normal	of	each	triangle	is	computed:	given	vertices	{Vl	Vc	Vd}	of	a	triangle	Ti	
the	surface	normal	Ni	is	given	by:	

𝑁! =
𝑉!𝑉!×𝑉!𝑉!
|𝑉!𝑉!×𝑉!𝑉!|

	

	
	
The	surface	normal	at	each	vertex	is	computed	by	averaging	the	surface	normal	of	the	
triangles	of	which	the	vertex	is	a	member:	

𝜙! =
𝑁!!

!!!
|𝑇|

	

where	|T|	is	the	number	of	triangles	of	which	|𝑉!|	is	a	member.	
	
The	curvature	is	computed	by	taking	the	angular	difference	between	the	surface	normals	at	
a	vertex	and	an	adjacent	vertex.	The	angular	difference	between	the	surface	normal	vectors	
𝜙! 	and	𝜙!	is:	

𝜃! = cos!!(
𝜙! ∙ 𝜙!
𝜙! |𝜙!|

)	

	
For	each	vertex,	the	average	curvature	corresponding	to	all	adjacent	vertices	is	computed.	
For	example,	the	average	curvature	for	vertex	𝑉! 	can	be	computed	as:	

𝐶!! =
cos!!( 𝜙! ∙ 𝜙!𝜙! |𝜙!|

)!∈{!,!,!,!,!}

𝑛
	

where	n	is	the	number	of	adjacent	vertices.	
Finally,	each	triangle	in	the	polygonal	representation	is	assigned	a	curvature	value	based	on	
the	average	of	the	curvatures	of	the	vertices	which	comprise	the	triangle:	

𝐶!! =
(𝐶!! + 𝐶!! + 𝐶!!)

3
	

where	𝑉! ,𝑉! ,𝑉! 	are	the	vertices	of	the	triangle	𝑇! .	
	
Descriptive	statistics	of	the	distribution	of	curvatures	over	the	entire	nodule	surface	are	
used	as	curvature	features.	
	
The	gradient	features	are	used	to	measure	the	nodule	margin,	which	is	defined	as	the	region	
along	the	nodule	boundary	and	lung	parenchyma.	The	3D	gradient	is	measured	in	the	x,	y,	z	
directions	as	defined	by	Deriche	[31].		
	
To	optimize	the	gradient	estimate,	at	each	triangle,	10	gradient	samples	are	evaluates	along	
the	surface	normal	vector	through	the	center	of	the	triangle	and	the	maximum	gradient	is	
recorded:	

𝐺!! = max {𝐺!!! ,𝐺!!! ,… ,𝐺!!!}	
where	𝐺!!" 	is	a	gradient	sample	for	triangle	𝑇! .	
	
Descriptive	statistics	of	the	distribution	of	these	maximum	gradients	over	the	entire	nodule	
surface	are	used	as	gradient	features.	
	
Parameter	optimization	
	



	 30	

Table	2	Parameter	search	space	for	each	classifier.	
Classifier	 Parameter	 Search	space	
dwNN	 σ		 0.1,	0.15,	0.2,	0.3,	0.4,	0.6,	0.8,	1.0,	1.2,	1.4,	1.6,	2.0,	2.4,	2.8,	3.2,	4.0,	

4.8,	5.4,	6.4,	8.0,	9.6,	11.2,	12.8,	14.4,	16.0	
SVM-P	 d	 1,	2,	3,	4	
SVM-P	 c	 10e-6,	2×10e-6,	4×10e-6,	…,	0.262,	0.524,	1.049	
SVM-R	 g	 10e-3,	2×10e-3,	4×10e-3,	…,	0.512,	1.024	
SVM-R	 c	 10e-4,		2×10e-4,	4×10e-4,	…,	3.277,	6.554	
LOG	 n	 1,	2,	3,	…,	min(number	of	positive	samples,	number	of	negative	

samples)/10	
	
Table	3	LOG	classifier	optimal	features	on	full	unbalanced	dataset	(fold	one	to	fold	five	
listed	from	5-fold	cross	validation).	The	number	of	features	is	n=25.	
fold	 Features	
1	 gdimh,	ddimh,	gsa,	gvol,	cran,	dmass,	cmin,	ddimw,	gdimw,	cmean,	gvsr,	ddiml,	gdiml,	

tmin,	cmax,	gcmp,	csd,	ckurt,	dskew,	tran,	dmd,	dkurt,	dsd,	garwh,	tskew	
2,	3	 gdimh,	ddimh,	gsa,	gvol,	dmass,	cran,	ddimw,	gdimw,	cmin,	gvsr,	ddiml,	gdiml,	cmean,	

tmin,	cmax,	gcmp,	csd,	ckurt,	dskew,	tran,	dmd,	tskew,	tmean,	garwh,	darwh	
4	 cran,	gdimh,	ddimh,	tmin,	cmin,	gsa,	gvol,	dmass,	cmax,	ddimw,	gdimw,	gdiml,	ddiml,	

cmean,	gvsr,	csd,	gcmp,	ckurt,	tran,	dskew,	tskew,	garwh,	tmean,	darwh,	tsd	
5	 cran,	gdimh,	ddimh,	gsa,	cmin,	gvol,	tmin,	dmass,	gdiml,	ddimw,	gdimw,	ddiml,	cmean,	

gvsr,	gcmp,	cmax,	csd,	ckurt,	tmean,	tran,	dskew,	tskew,	gsph,	dmd,	cskew	
	
Table	4	LOG	classifier	optimal	features	on	full	balanced	dataset	GA	using	balanced	training	
and	unbalanced	training	(fold	one	to	fold	five	listed	from	5-fold	cross	validation).	The	
number	of	features	is	n=3.	
fold	 training	 features	
1,	3	 balanced	 tmean,	dmd,	tmax	
2	 balanced	 tmean,	dmd,	csd	
4	 balanced	 tmean,	dmd,	dsd	
5	 balanced	 tmean,	dmd,	garwh	
1-5	 unbalanced	 gdimh,	ddimh,	cran	
	


